

Tevatron End of Run Studies

A.Valishev, J.Annala, B.Hanna, T.Johnson, R.Moore, D.Still, C.Y.Tan, X.Zhang (FNAL), R.Miyamoto, F.Schmidt (CERN), X.Gu, S.White (BNL), J.Qiang (LBNL)

September 19 2011 Fermilab All Experimenters Meeting

Motivation and Plan

- Tevatron Accelerator Studies Workshop (January 13-14, 2010)
 - https://indico.fnal.gov/conferenceOtherViews.py?view=standard&confld=2921
 - Generated long list of studies to be considered, rough plans
- Fermilab AAC meeting (July 28-30, 2010)
 - https://indico.fnal.gov/conferenceDisplay.py?confld=3475
 - Strong support for an accelerator studies program
- DOE Institutional Review of Fermilab (June 6-9, 2011)
 - https://indico.fnal.gov/conferenceDisplay.py?confld=4263
 - Support of the proposed accelerator studies
- All Experimenters' Meeting (August 15, 2011)
 - http://www.fnal.gov/directorate/program_planning/all_experimenters_meetings/ special_reports/Valishev_EOR_Studies_08_15_11.pdf

List of Topics

- 1. AC Dipole with colliding beams
 - AC dipole is a device that adiabatically excites transverse oscillations of the beam. Turn-by-turn detection of oscillations at the excitation frequency allows to restore the beam optics.
- 2. Coherent Beam-Beam Modes
 - Colliding beams represent a system of coupled oscillators with their eigenfrequencies determined by beam and machine properties.
 Coherent instabilities may happen under certain conditions
- 3. Beam-Beam Resonances vs Separation
 - Study the importance of transverse beam-beam misalignment
- 4. Betatron Phase Averaging
 - Theory predicts that the magnitude of beam-beam effects is strongly affected by the ratio of transverse beta-function to the bunch length.
- Diffusion Driven by Beam-Beam Resonances
 - Beam-beam effects interplay with other diffusion and noise sources

Organization and Scheduling

- We have requested 40 hours of beam time over the two week period
- RunCo team calculated that 43 hours were used
 - Actual time with beam ~35 hours
- First week was strongly affected by the ecool troubles
- Nevertheless, achieved some good results!

LHC Offset Beam-Beam Collision Studies (Ji Qiang)

- The offset collision is unavoidable due to the different bunch collision schemes at LHC
- Such offset collision might cause emittance growth that degrades luminosity lifetime and experimental conditions

Emittance Growth vs. Offset

- We have made a systematic scan of the separation in the possible range which is consistent with the simulations
- There is no emit growth which would be consistent with the worst case being at ~1.5 sigma

Separation Scan #1

Coherent Beam-Beam

- Due to lack of high intensity & low emittance for the Pbars till about this Wednesday 24th we couldn't quite do that part (also the "driving force" Simon left on Sunday)
- However, "the other half", i.e. the chromaticity threshold study in conjunction of BB was very conclusive:
 - Whenever BB is present any chromaticity value can be dialed in without causing an instability! Some minor Schottky activity for Q' [0, ~-1]
 - This remains true independent of the chosen working point.
 - In case BB is weak but the emittance is large there is also no effect.
 - For a nominal 3x0 the instability was very fast slightly above 0, causing a quench – sorry!

AC Dipole

- The goal was to excite the "weak" beam through the strong beam using the AC-dipole
- However, "without" excitation of the strong beam
- We need to record the turn-by-turn BPM data around the ring
- We had to reverse the weak-strong set-up since the BPM system operates in a turn-by-turn mode for protons only → use lowest possible proton intensity against nominal low emittance phars
- Changes to the linear lattice function due to BB can be derived from a reference measurement with protons only
- Successfully demonstrated the technique with colliding beams (3x3 bunches at LowBeta)! No instability or emittance growth after multiple excitations.

AC Dipole

Phase Averaging

- The goal was to collide bunches at different bunch length/beta* ratios
- This was achieved by cogging
- Produced excellent data, in qualitative agreement with expectations!
 Good for benchmarking future simulations.

proton (left) and pbar (right) lifetime vs beta*/sigma

Summary

- Despite numerous technical issues and machine failures, the studies were successful in many aspects:
 - Proof-of-principle experiment with AC dipole acting on colliding bunches
 - 2. Demonstration of the Landau damping of coherent instability by beam-beam interaction
 - 3. Measurement of the "phase averaging effect" lifetime vs. bunch length / beta*
 - Measurement of the effect of transverse beam-beam separation on intensity and emittance
- Many thanks to the experiments for donating time
- We are indebted to the Run Coordinators and Operations personnel for making these studies happen
- A technical note summarizing the results will be published soon